Viral Infection and Specialized Lung Cells Linked to COPD
Investigators at Washington University School of Medicine in St. Louis have described another link in the chain of events that connect acute viral infections to the development of chronic obstructive pulmonary disease (COPD). Their discovery points to a new therapeutic target for COPD, an extremely common disease of the lower airways that is seen in chronic bronchitis and emphysema.
COPD affects about 12 million people in the United States, where it is the third leading cause of death. Worldwide, it is the fifth leading cause of death. It is characterized by inflammation of the lower airways and destruction of lung tissue that limit airflow and pulmonary function. No effective treatments exist to specifically address a major cause of disease advancement and death from COPD – excess inflammatory mucus that blocks airways and prevents normal breathing.
It is well established that smoke exposure is a major risk factor for COPD, but in this new research, investigators show that the cells that line the airways also can respond to viruses in a way that leads to long-term lung inflammation and mucus production that are typical of COPD.
The research, featured on the cover of the September issue of the Journal of Clinical Investigation, reconciles the discrepancy between the transient nature of most viral infections and the relatively permanent nature of chronic inflammatory diseases such as COPD.
Michael J. Holtzman, MD, the Selma and Herman Seldin Professor of Medicine at Washington University, has devoted much of his career to understanding the connections between environmental agents and development of chronic lung disease. Five years ago, he and his colleagues reported that a signaling molecule called interleukin-13 (IL-13) was the key driver of excess production of chronic airway mucus after viral infection. Since then, they have pursued the basis for IL-13 production and its usefulness as a marker and a target for more precise therapeutic intervention in COPD and related diseases such as asthma.
Read more at Bio Science Technology
0 comments: